En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.
La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.
Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:
El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.
Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto { a, b, c } también puede escribirse:
{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }
En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:
El conjunto { b, b, b, d, d } simplemente será { b, d }.
SUBCONJUNTO
Sean los conjuntos A={ 0, 1, 2, 3, 5, 8 } y B={ 1, 2, 5 }
En este caso decimos que B esta contenido en A, o que B es subconjunto de A. En general si A y B son dos conjuntos cualesquiera, decimos que B es un subconjunto de A si todo elemento de B lo es de A también.
Por lo tanto si B es un subconjunto de A se escribe B Ì A. Si B no es subconjunto de A se indicará con una diagonal Ë .
Note que Î se utiliza solo para elementos de un conjunto y Ì solo para conjuntos.
El conjunto que contiene a todos los elementos a los que se hace referencia recibe el nombre de conjunto Universal, este conjunto depende del problema que se estudia, se denota con la letra U y algunas veces con la letra S (espacio muestral).
Por ejemplo si solo queremos referirnos a los 5 primeros números naturales el conjunto queda:
Forma alternativa para indicar conjuntos de gran importancia:
- Conjunto de números naturales (enteros mayores que cero) representados por la letra N donde
- Conjunto de números enteros positivos y negativos representados por la letra Z donde
- Conjunto de números racionales (números que se representan como el cociente de dos números enteros {fracciones }). Estos números se representan por una Q
- Conjunto de números irracionales (números que no puedan representarse como el cociente de dos números enteros) representados por la letra I.
- Conjunto de los números reales que son los números racionales e irracionales es decir todos, representados por R.
Todos estos conjuntos tienen un número infinito de elementos, la forma de simbolizarlos por extensión o por enumeración es de gran utilidad cuando los conjuntos a los que se hace referencia tienen pocos elementos para poder trabajar con ellos se emplean la notación llamada comprehensión.
Por ejemplo, la denotar el conjunto de los números naturales menores que 60. Aquí U es el conjunto N y se tiene una propiedad que caracteriza a los elementos del conjunto: ser menores que 60.
Para indicar esta situación empleamos la simbología del álgebra de conjuntos:
Ahora si se desea trabajar con conjuntos que manejen intervalos estos pueden ser representados por medio de una expresión algebraica; supongamos que se desea expresar los números enteros (Z) entre -20 y 30 el conjunto quedaría de la manera siguiente:
También se puede expresar el valor de un conjunto indicando la pertenencia o no pertenencia a uno diferente, por ejemplo
La unión de dos conjuntos A y B la denotaremos por A È B y es el conjunto formado por los elementos que pertenecen al menos a uno de ellos ó a los dos. Lo que se denota por:
A È B = { x/x Î A ó x Î B }
Ejemplo: Sean los conjuntos A={ 1, 3, 5, 7, 9 } y B={ 10, 11, 12 }
A È B ={ 1, 3, 5, 7, 9, 10, 11, 12 }
Sean A={ 1, 2, 3, 4, 5, 6, 8, 9 } y B={ 2, 4, 8, 12 }
Los elementos comunes a los dos conjuntos son: { 2, 4, 8 }. A este conjunto se le llama intersección de A y B; y se denota por A Ç B, algebraicamente se escribe así:
A Ç B = { x/x Î A y x Î B }
Y se lee el conjunto de elementos x que están en A y están en B.
Ejemplo:
Sean Q={ a, n, p, y, q, s, r, o, b, k } y P={ l, u, a, o, s, r, b, v, y, z }
Q Ç P={ a, b, o, r, s, y }
Un conjunto que no tiene elementos es llamado conjunto vacío ó conjunto nulo lo que denotamos por el símbolo Æ .
Por ejemplo:
Sean A={ 2, 4, 6 } y B={ 1, 3, 5, 7 } encontrar A Ç B.
A Ç B= { }
El resultado de A Ç B= { } muestra que no hay elementos entre las llaves, si este es el caso se le llamará conjunto vacío ó nulo y se puede representar como:
A Ç B=Æ
Una permutación de objetos es un arreglo de éstos en el que orden sí importa. Para encontrar el número de permutaciones de n objetos diferentes en grupos de r, se usan las siguientes fórmulas:
| Cuando no se permite repetición |
| Cuando se permita repetición |
Una combinación de objetos es un arreglo de éstos en el que el orden no importa. Para encontrar el número de combinaciones de n objetos en grupos de r, se usa la siguiente fórmula:

EJEMPLOS:
|
A) ¿Cuántas cantidades de tres cifras se pueden formar con los dígitos 0, 1, 2, 3 y 4 si no se permite la repetición? Solución:
B) ¿Cuántas cantidades de cuatro cifras se pueden formar con los dígitos 0, 1, 2, 3 y 4 si se permite la repetición? Solución:
C) De entre 8 personas debemos formar un comité de cinco miembros. ¿Cuántas diferentes posibilidades existen para formar el comité? Solución: Esta es una combinación porque el orden no importa.
No hay comentarios:
Publicar un comentario